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Introduction

Introduction

Under the Bayesian point of view to statistical inference, all
unknown quantities in a statistical system are treated as random
variables, reflecting (typically) subjective uncertainty measured by
a probability distribution.

The Bayesian approach allows one to combine information from
different sources to estimate unknown parameters.

I Both data and external information (prior) are used.

I Computations are based on the Bayes theorem.

I Parameters are defined as random variables.
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Introduction

I Direct probabilistic interpretation of a confidence interval for a
parameter is possible, ie, given the observed data
x = (x1, . . . , xn) we can find an interval, for a given α, such
that

P(θ ∈ [θ1, θ2]|x) ≥ 1− α.

I In a hypothesis testing problem we can compute the
probability that a specific hypothesis is true, given the data.

I Prior knowledge and reasonable prior concepts can be built
into the analysis.
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Introduction

Why Bayesian methods

I Allow incorporation of (prior) scientific information.

I Appropriateness of methods does not depend on having large
sample sizes.

I Direct probability interpretations.
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Bayes Theorem: Discrete Case

Bayes Theorem: Discrete Case
I A scientist has M disjoint hypotheses (H1,H2, . . . ,HM) about

some random mechanism. These hypotheses are mutually
exclusive and exhaustive.

I The ”true” hypothesis cannot be observed, but the scientist
may assign probabilities p(Hi ) to the events ”hypothesis Hi is
true”. These are called prior probabilities. They should obey
the axioms of probability, namely

0 ≤ p(Hi ) ≤ 1, i = 1, 2, . . . ,M,

p(Hi ∩ Hj) = 0, i 6= j ,

M∑
i=1

p(Hi ) = 1.
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Bayes Theorem: Discrete Case

I An experiment can be performed with N observable effects
E1,E2, . . . ,EN . Given that hypothesis Hi holds, one expects
to observe effects with conditional probabilities

0 ≤ p(Ej |Hi ) ≤ 1, i = 1, 2, . . . ,M, j = 1, 2, . . . ,N,

p(Ej ∩ Ek |Hi ) = 0, j 6= k,

N∑
j=1

p(Ej |Hi ) = 1.
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Bayes Theorem: Discrete Case

Example 1: Inheritance of Hemophilia

Suppose there is a non-hemophiliac woman whose father and
mother are not affected by the disease but who has a hemophiliac
brother. The woman can be a carrier or not. Let C indicate that
the woman is a carrier and C indicate that she is not a carrier.
Then, we can establish a priori that

P(C ) = P(C ) =
1

2
.

Suppose now that the woman has a non-hemophiliac son. Let S1

represent this evidence. Hence we have:

P(S1|C ) =
1

2
, P(S1|C ) = 1.
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Bayes Theorem: Discrete Case

By Bayes theorem we have the following posterior probabilities:

P(C |S1) =
P(C )P(S1|C )

P(C )P(S1|C ) + P(C )P(S1|C )
=

=
1
2 ×

1
2

1
2 ×

1
2 + 1

2 × 1
=

1

3

P(C |S1) =
2

3
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Bayes Theorem: Discrete Case

Generalizing:

I E is a random variable taking one of the states
Ej , j = 1, 2, . . . ,N and H a random variable taking one of the
states Hi , i = 1, . . . ,M. The joint distribution of H and E is

P(H = Hi ,E = Ej) = p(Hi )p(Ej |Hi ),

i = 1, 2, . . . ,M; j = 1, 2, . . . ,N.
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Bayes Theorem: Discrete Case

I Given that effect Ej is observed the conditional probability
that Hi holds is

p(Hi |Ej) =
P(H = Hi ,E = Ej)

p(Ej)
=

=
p(Hi )p(Ej |Hi )

p(Ej)
=

=
p(Hi )p(Ej |Hi )∑M

k=1 p(Hk)p(Ej |Hk)
.
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Bayes Theorem: Discrete Case

This standard result of conditional probability is known as Bayes
theorem. The probabilities p(Hi |Ej) are called posterior
probabilities. Given that Ej is observed we obtain the posterior
distribution for H.

The last expression illustrates the concept of ”Bayesian learning”.
This is a process by which a prior opinion is modified by the
evidence to become a posterior opinion.
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Bayesian Updating

Bayesian Updating

Example 1 (cont.): Inheritance of Hemophilia

Suppose further that she has another son and he is also
non-hemophiliac. Let S2 represent this new evidence. To compute
the posterior probabilities for C and C we can use as prior the
posterior obtained before (that result from evidence S1).

Our prior knowledge about C and C is now

P(C ) =
1

3
, P(C ) =

2

3
.

Assuming independence

P(S2|C ) =
1

2
, P(S2|C ) = 1.
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Bayesian Updating

Hence, applying again Bayes theorem we have

P(C |S2) =
P(C )P(S2|C )

P(C )P(S2|C ) + P(C )P(S2|C )
=

=
1
3 ×

1
2

1
3 ×

1
2 + 2

3 × 1
=

1

5

P(C |S2) =
4

5
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Bayesian Updating

We can see that the same result can be obtained if the initial
evidence (call it S) is that the woman has two non-hemophiliac
sons.

Assuming independence

P(S |C ) =
1

2
× 1

2
=

1

4
, P(S |C ) = 1.

Using as prior information

P(C ) = P(C ) =
1

2
,
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Bayesian Updating

we have, by Bayes theorem,

P(C |S) =
P(C )P(S |C )

P(C )P(S |C ) + P(C )P(S |C )
=

=
1
2 ×

1
4

1
2 ×

1
4 + 1

2 × 1
=

1

5

P(C |S) =
4

5

as before.
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Bayesian Updating

Generalizing:

Suppose now that there is additional evidence E ∗j . Using Bayes
theorem we have

p(Hi |Ej ,E
∗
j ) =

p(Hi )p(Ej ,E
∗
j |Hi )∑M

k=1 p(Hk)p(E ∗j ,Ej |Hk)
∝

∝ p(Hi )p(Ej ,E
∗
j |Hi ) =

= p(Hi )p(Ej |Hi )p(E ∗j |Ej ,Hi ) =

= p(Hi |Ej)p(E ∗j |Ej ,Hi ).

This indicates that the posterior distribution after evidence Ej

conveys the prior opinion before E ∗j is observed.
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Bayesian Updating

It also describes how opinions are revised sequentially or,
equivalently, how knowledge is modified by evidence.

If Ej and E ∗j are conditional independent given Hi , then

p(Ej ,E
∗
j |Hi ) = p(Ej |Hi )p(E ∗j |Hi )

and
p(Hi |Ej ,E

∗
j ) ∝ p(Hi )p(Ej |Hi )p(E ∗j |Hi ).
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Bayes Theorem: Continuous Case

Bayes Theorem: Continuous Case

As well as using Bayes’ theorem for comparing models, we can use
Bayes’theorem to estimate parameters of models.

Consider the situation where the role of the evidence is played by a
vector of observations x1, . . . , xn and that we formulate a
probability model for the correspondent random vector X1, . . . ,Xn.

Usually this model depends on a parameter or a set of parameters
θ with parameter space Θ.
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Bayes Theorem: Continuous Case

I f (x1, . . . , xn|θ)

Joint pmf or pdf (Likelihood) of X = (X1, . . . ,Xn)

I p(θ)

Prior probability density function of parameter θ.

I p(θ|x1, . . . , xn)

Posterior distribution of θ, given the observed data
x = (x1, . . . , xn)
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Bayes Theorem: Continuous Case

Choosing Prior Distributions

I Identify appropriate class of distributions, e.g.,
I Data in [0, 1]: uniform distribution, Beta distribution
I Data in [0,∞[: gamma distribution, lognormal distribution,

normal distribution (with µ� 0)
I Data in ]−∞,∞[: normal distribution, t distribution

I Decide on informative versus non-informative or vague priors

I Non-informative (Jeffrey’s prior):
p(θ) ∝

√
E (−∂2f (X |θ)/∂θ2)

I Vague: large variance
I Informative: specify mean only or specify mean and variance

or specify all parameters of distribution (if more than two)
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Bayes Theorem: Continuous Case

Some Conjugate Priors

Likelihood Prior Posterior

Binomial Beta Beta

Poisson Gamma Gamma

Exponential Gamma Gamma

Normal (known variance) Normal Normal

Multinomial Dirichlet Dirichlet
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Bayes Theorem: Continuous Case

Bernoulli Model and its Conjugate Prior - Beta Distribution

I Assume that Xi are iid Bernoulli with probability of success θ,
then we have the Likelihood

f (x1, . . . , xn|θ) =
n∏

i=1

θxi (1− θ)1−xi = θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi .

Note: If X is Bernoulli distributed with probability of success θ,
then

f (x |θ) ≡ P(X = x |θ) = θx(1− θ)1−x x = 0, 1
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Bayes Theorem: Continuous Case

I Since θ is unknown we can assume that it is random and
assign a probability distribution to it, representing our prior
opinion about the plausibility of values that θ takes in
Θ = [0, 1]

For instance we can assume that θ has a Beta distribution
with parameters (a, b) and hence write

p(θ) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 θ ∈ [0, 1].

24 / 37



Bayesian Inference ABSTAT18

Bayes Theorem: Continuous Case

I If we assume a Beta prior for θ the posterior distribution is

p(θ|x1, . . . , xn) ∝ θ
∑n

i=1 xi+a−1(1− θ)n−
∑n

i=1 xi+b−1

which is again Beta with parameters(
a+

n∑
i=1

xi , b+n −
n∑

i=1

xi

)
.

Note how the data transformed the prior opinion about θ.
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Bayes Theorem: Continuous Case

prior posterior

hyperparameters a, b a+
∑n

i=1 xi , b+n −
∑n

i=1 xi

expected value a
a+b

∑n
i=1 xi+a
n+a+b

variance ab
(a+b)2(a+b+1)

(
∑n

i=1 xi+a)(n−
∑n

i=1 xi+b)
(n+a+b)2(n+a+b+1)

mode a−1
a+b−2

(
∑n

i=1 xi+a−1)
n+a+b−2

The parameters of the prior are called hyperparameters. They are
usually assumed to be known. Their values can be elicited using
expert opinion.
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Features of the posterior distribution

The posterior distribution is used to draw inferences for θ. These
inferences can be made in terms of features of the posterior
distribution such has

I measures of location (mean, median, mode);

I quantiles;

I credible intervals;

I probabilities of sets, etc.

We will go through these measures using the Occurrence of
Nucleotide A in a Sequence.
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Features of the posterior distribution

Example 2: Occurrence of Nucleotide A in a Sequence

Suppose that we have a sequence of nucleotides and we are
interest in a specific nucleotide, say A.

I Let Xi (i = 1 . . . , n) be equal to 1 if A is in the position i and
0 otherwise. Suppose that the probability of occurrence of A,
P(A) = θ, is unknown but remains constant. Thus,

Xi _ Bernoulli(θ)
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Features of the posterior distribution

I Suppose that our prior opinion about the probability of
occurrence of A in a long DNA sequence is Beta(1, 1), that is

θ _ U(0, 1) ≡ Beta(1, 1)

# Beta(a,b) with a=b=1

> a<-1

> b<-1
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Features of the posterior distribution

I We observe a subsequence of size n = 100 and obtain
t =

∑
xi = 43. The posterior is Beta(44, 58), that is

θ|x_ Beta(44, 58)

> n<-100; x<-43

> a.star<-x+a; a.star

[1] 44

> b.star<-n-x+b; b.star

[1] 58
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Features of the posterior distribution

We can understand how our opinion was changed by the
experiment, by plotting both densities:

> s<-seq(0,1,by=0.01)

> y<-dbeta(s,a,b)

> y.star<-dbeta(s,a.star,b.star)

> plot(s,y,type="n",xlim=c(0,1),ylim=c(0,2.8),

xlab=expression(theta),ylab="density > function: beta(5,7)")

> lines(s,y)

> lines(s,y.star,col="red")

> text(0.8,2,"prior")

> text(0.8,1.8,"posterior",col="red")
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Features of the posterior distribution
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Features of the posterior distribution

Posterior Mean

The posterior mean of a parameter can be used as a point estimate
for the parameter.

Since
p(θ|x) ≡ Beta(44, 58),

a Bayes estimate for θ, the probability of obtaining an A, is

θmean = E (θ|x) =
44

102
= 0.4314.

> a.star/(a.star+b.star)

[1] 0.4313725
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Features of the posterior distribution

Posterior Median

The posterior median can also be used as a Bayes estimate for θ.
The posterior median is the value of θ, θmedian, such that

P(θ ≤ θmedian|x) =
1

2
.

The function qbeta from R can be used to obtain the median)

> qbeta(0.5,a.star,b.star)

[1] 0.4309223

and we have
θmedian = 0.4309.
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Features of the posterior distribution

Posterior Mode

This is the mode of the posterior distribution, ie, the value θmode

such that p(θ|x) attains its maximum, ie

p(θmode |x) = max
θ∈Θ

p(θ|x).

Again θmode can be used as a Bayes estimate for θ. In the example

θmode =

∑
xi + a− 1

n + a + b − 2
=

43

100
= 0.43.

> (a.star-1)/(a.star+b.star-2)

[1] 0.43
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Features of the posterior distribution

Credible Interval

We can compute a credible interval with equal probability tails, ie,
by considering for the lower interval the quantile α/2 = 0.025 of
the Beta distribution and for the upper interval the quantile
(1− α/2 = 0.975). We can do this using function qbeta from R.

> qbeta(c(0.025,0.975),44,58)

[1] 0.3372088 0.5280864

Hence our 95% credible interval for θ would be the interval
[0.337, 0.528] and we could say that

P(0.337 < θ < 0.528|
∑100

i=1 xi = 43) = 0.95).
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Features of the posterior distribution
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